The changes in the technical and regulatory environment around collecting and processing personal data are impacting the ability of companies to precisely target and measure their audiences. Brands have to review their data strategies to continue to accurately reach their audiences and optimize their media budgets.
No need to lose sleep because there is a proven solution: the implementation of an AI-based Marketing Engine in a custom-build CDP on Google Cloud Platform.
This flexible solution enables you to exploit first-party data to its full potential, in full compliance with regulations. This solution allows audiences to be segmented in an automated way adopting MLOps for managed activation across all owned, earned, and paid digital marketing platforms.
The disappearance of third-party cookies and the decrease in the volume of first-party data make targeting and retargeting more challenging. The technologies that will replace third-party cookies won’t achieve the same degree of relevance and volume. Measurement capabilities will be considerably reduced: it will no longer be possible to track and reconcile all digital touchpoints. And complying with regulations will make collecting and processing personal data more complex.
The ability to deal with these constraints is an opportunity to distinguish yourself
The key is to build a consumer data strategy:
We have developed this kind of solution several times, both in B2B, such as for FD Media Group and in B2C and D2C eCommerce.
To personalize and optimize digital marketing campaigns, you need to be able to build relevant and easily activatable segments. This is the role of Marketing Activation and Analytics Clouds that are being built on the Google Cloud Platform. Google Cloud is most suited for this if you ask me. It is the ease of build and ease of integration of Google Cloud, and the native integrations with the Google advertising and measurement ecosystem such as Google Ads, and Google Analytics.
Audience engines adopt MLOps principles and centralize site-centric and app data, always while respecting the user’s data privacy. Second- and third-party data are added to enrich proprietary data.
These data can then be aggregated using algorithms that can have different functions, some of which are noted below:
Adopting MLOps principles will allow for automation of continuous training and monitoring of models/segment creation. The resulting audience segments can be fed into the advertiser’s ecosystem of activation platforms in near real-time.
What are the key takeaways to successfully engaging in your first-party-driven digital transformation journey? Crystalloids’ top 4 recommendations: